LA APASIONADA CURIOSIDAD DE ALBERT EINSTEIN Y SU CAPACIDAD DE ASOMBRO
En este caso tenemos una situación inversa, un gran físico, enamorado desde su infancia de la geometría euclidiana y la matemática a través de un libro que le entrega su tío, quien en Munich tenía un negocio en sociedad con el padre de Albert.
En la biografía de Banesh Hoffmann sobre la vida de Einstein dice: ....el joven Albert encontró una ayuda indudable en su tío Jakob. Al parecer, antes de que Albert estudiara geometría, tío Jakob le había hablado del teorema de Pitágoras: la suma de los cuadrados de los catetos de un triángulo rectángulo es igual al cuadrado de la hipotenusa, o en otras palabras si en un triángulo ABC el ángulo C es un ángulo recto, entonces AB2 = AC2 + BC2.
Albert quedó fascinado. Tras ímprobos esfuerzos, encontró la forma de demostrar el teorema —proeza extraordinaria, dadas las circunstancias, y que llenaría de satisfacción al niño y a su tío—. Sin embargo, por extraño que parezca, esta satisfacción debió de ser insignificante comparada con la emoción que experimentó más tarde con un pequeño MANUAL de geometría euclidiana, que le absorbió por completo.
Tenía entonces doce años, y el libro le produjo un impacto tan fuerte como el de la brújula magnética siete años antes. En sus Notas autobiográficas habla entusiasmado del «santo librito de geometría», y dice: «Había afirmaciones, por ejemplo la de la intersección de las tres alturas de un triángulo en un punto, que -sin ser evidentes- podían demostrarse con tal certeza que parecía absurda la menor duda. Esta lucidez y certeza me produjeron una impresión indescriptible.»
A quienes sientan aversión instintiva hacia las matemáticas, esta pasión por la geometría tiene que resultarles increíble -algo parecido al amor del herpetólogo hacia las serpientes-. Como Einstein eligió el camino fácil, pero honrado, de describir la impresión como indescriptible, recurriremos a una descripción de Bertrand Russell, que tuvo una experiencia semejante y casi a la misma edad. «A los once años de edad comencé a estudiar a Euclides... Fue uno de los grandes acontecimientos de mi vida, tan deslumbrante como el primer amor. Nunca había imaginado que hubiera algo tan maravilloso en este mundo.» Y no olvidemos las palabras de la poetisa estadounidense Edna St. Viricent Millay: «Sólo Euclides ha contemplado la Belleza al desnudo.»
Siendo niño, Albert leyó libros de divulgación científica con lo que más tarde describiría como «atención embelesada». Estos libros no llegaron a sus manos de forma accidental. Se los había proporcionado deliberadamente Max Talmey, perspicaz estudiante de medicina que durante algún tiempo acudió todas las semanas a casa de los Einstein. Talmey tuvo prolongadas discusiones con el pequeño Albert, orientándole y ampliando sus horizontes intelectuales en una edad crucial para su formación. Cuando el propio Albert llegó a dar clases de matemáticas superiores, Talmey orientó las conversaciones entre ambos hacia el campo de la filosofía, en el que todavía podía defenderse. Recordando aquellos días, Talmey escribió: «Le recomendé que leyera a Kant. Albert sólo tenía trece años, y sin embargó, las obras de Kant, incomprensibles para la mayoría de los mortales, le parecían muy claras.»
Un sorprendente resultado de los libros científicos sobre el impresionable Albert fue que de repente se volvió antirreligioso. No se le escapaba que la historia científica no coincidía con la bíblica. Hasta entonces, había encontrado en la religión el consuelo de la certeza. Entonces comprendió que tenía que renunciar a ella, al menos en parte, y esto le produjo un intenso conflicto emocional. Durante cierto tiempo no sólo dejó de ser un creyente, sino que se convirtió en un escéptico lleno de fanatismo, profundamente receloso ante toda autoridad.
Unos cuarenta años después, llegó a decir con ironía: «Para castigarme por mi desprecio de la autoridad, el destino me convirtió a mí mismo en una autoridad.» Su desconfianza inicial hacia la autoridad, que nunca le abandonó por completo, resultaría de gran importancia. Sin ella, no habría adquirido la enorme independencia de espíritu que le dio el valor necesario para poner en tela de juicio las opiniones científicas tradicionales y, de esa manera, revolucionar la física.
Una página del «sagrado libro de geometría» en la que aparece una anotación de Albert sobre el teorema 3: «Esta demostración no tiene sentido, pues si podemos suponer que los espacios del prisma se pueden convertir en una superficie lisa, habría que decir lo mismo del cilindro.»
No hay comentarios:
Publicar un comentario